Role of conformational entropy in force-induced biopolymer unfolding.

نویسندگان

  • Sanjay Kumar
  • Iwan Jensen
  • Jesper L Jacobsen
  • Anthony J Guttmann
چکیده

A statistical mechanical description of flexible and semiflexible polymer chains in a poor solvent is developed in the constant force and constant distance ensembles. We predict the existence of many intermediate states at low temperatures stabilized by the force. A unified response to pulling and compressing forces has been obtained in the constant distance ensemble. We show the signature of a crossover length which increases linearly with the chain length. Below this crossover length, the critical force of unfolding decreases with temperature, while above, it increases with temperature. For stiff chains, we report for the first time sawtoothlike behavior in the force-extension curves which has been seen earlier in the case of protein unfolding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The backbone conformational entropy of protein folding: experimental measures from atomic force microscopy.

The energy dissipated during the atomic force microscopy-based mechanical unfolding and extension of proteins is typically an order of magnitude greater than their folding free energy. The vast majority of the "excess" energy dissipated is thought to arise due to backbone conformational entropy losses as the solvated, random-coil unfolded state is stretched into an extended, low-entropy conform...

متن کامل

N-terminal strands of filamin Ig domains act as a conformational switch under biological forces.

Conformational changes of filamin A under stress have been postulated to play crucial roles in signaling pathways of cell responses. Direct observation of conformational changes under stress is beyond the resolution of current experimental techniques. On the other hand, computational studies are mainly limited to either traditional molecular dynamics simulations of short durations and high forc...

متن کامل

Mechanical activation of a multimeric adhesive protein through domain conformational change.

The mechanical force-induced activation of the adhesive protein von Willebrand factor (VWF), which experiences high hydrodynamic forces, is essential in initiating platelet adhesion. The importance of the mechanical force-induced functional change is manifested in the multimeric VWF's crucial role in blood coagulation, when high fluid shear stress activates plasma VWF (PVWF) multimers to bind p...

متن کامل

Exact low-force kinetics from high-force single-molecule unfolding events.

Mechanical forces play a key role in crucial cellular processes involving force-bearing biomolecules, as well as in novel single-molecule pulling experiments. We present an exact method that enables one to extrapolate, to low (or zero) forces, entire time-correlation functions and kinetic rate constants from the conformational dynamics either simulated numerically or measured experimentally at ...

متن کامل

Entropy and Barrier-Hopping Determine Conformational Viscoelasticity in Single Biomolecules

Biological macromolecules have complex and non-trivial energy landscapes, endowing them a unique conformational adaptability and diversity in function. Hence, understanding the processes of elasticity and dissipation at the nanoscale is important to molecular biology and also emerging fields such as nanotechnology. Here we analyse single molecule fluctuations in an atomic force microscope (AFM)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 98 12  شماره 

صفحات  -

تاریخ انتشار 2007